

ECO

Goutam Bhat Martin Danelljan

Introduction **Discriminative Correlation Filter (DCF) Trackers:** A historical comparison

	MOSSE	ССОТ
	[CVPR 2010]	[ECCV 2016]
Status	Pioneering work, but obsolete	State-of-the-art, winner of VOT2016
lmage Features	Raw grayscale values	Conv layers from a CNN (and other)
Parameters	~10 ³	~10 ⁶
Speed	$\sim \! 1000 \text{ FPS}$	$\sim 1 \text{ FPS}$

Problem: Improved tracking performance at the cost of increased model size and complexity.

Consequences: (1) Slow tracking, (2) Overfitting

We address (1) computational complexity and (2) overfitting in state-of-the-art DCF trackers by

- Reducing the model size using factorized convolution
- Introducing a training set model that reduces its size and increases diversity
- Investigating the model update scheme, for better speed and robustness

Continuous Convolution Operator Tracker (CCOT) [1]

ECO: Efficient Convolution Operators for Tracking

Computer Vision Laboratory, Linköping University, Sweden

Factorized Convolution:

- **Previous Work:** Large number of excessive filters containing negligible energy (right).
- Leads to slower optimization and overfitting.
- Our Method: We learn a smaller set of filters ² and a coefficient matrix $P = (p_{c,d})$.
- Factorized convolution operator:

 $S_{Pf}\{x\} = \sum_{c,d} p_{d,c} f^c * J_d\{x^d\} = f * P^T J\{x\}$

- We train f and P jointly by minimizing the regression loss in the first frame.
- The loss is optimized in the Fourier domain using Gauss-Newton and Conjugate Gradient.
- Gain: 6-fold reduction in number of filters.

Generative Sample Space Model:

- We optimize an approximate expected regression loss by replacing α_j and x_j with π_j and μ_j .
- Gain: 8-fold reduction in the number of training samples.

Model Update and Optimization Strategy

- **Previous Work:** Most DCF methods update the tracking model in each frame.
- In CCOT, a few (typically five) Conjugate Gradient (CG) iterations is performed each frame. • Our Method: We only optimize every $N_{\rm S}$ frame for faster tracking.
- This also causes less overfitting to recent frames, leading to better tracking performance.
- We further propose to use the Polak-Ribière formula in CG for faster convergence.
- Gain: 6-fold reduction in the number of Conjugate Gradient iterations.

	jugate O	laulen	L.	
	Conv-1	Conv-5	HOG	CN
Feature dim.,	<i>D</i> 96	512	31	11
Filter dim (16	64	10	3

- **Previous Work:** employ a fix learning rate $\alpha_j \sim (1-\gamma)^{-j}$.
- Oldest sample is replaced.
- Requires a large sample limit $M_{
 m max}$
- Costly learning and poor diversity of training samples (see figure).
- Our Method: A Gaussian Mixture Model of the sample distribution
 - $p(x) = \sum_{l=1}^{L} \pi_l \mathcal{N}(x; \mu_l, I)$
- Updated using an efficient online algorithm [2].

Baseline C	
	Baseli
	0-00
EAO	0.331
FPS (C	(PU) 0.3
Compl.	rea
ECO:	tures (VGG)
• 15 EDS or	tures (VGG) n GPU
FCO-HC:	II GPO
• Hand-cra	fted feature
• 60 FPS of	n CPU
Optimal	for UAV and
•	
OT	B-100
100	Success plot
80	
MDNet [68.5]	
MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF	0] [64.3]
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF O SRDCFad [63 20	0] [64.3] 3.4]]
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 20 20 SRDCF [60.5] Staple [58.4] SiameseFC [5]	0] [64.3] 3.4]] 57.5]
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 20 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0.2	0] [64.3] 3.4]] 57.5] 0.4 0.6 0.8 verlap threshold
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 Staple [58.4] SiameseFC [4 0 0 0 0 CVPR 201	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCF [60.5 Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers (Ours)
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers (Ours) (Ours)
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0	[64.3] $[64.3]$ $[64.3]$ $[57.5]$ $[0.4 0.6 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4$
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0	[64.3] $[64.3]$ $[64.3]$ $[57.5]$ $[0.4 0.6 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[0.4 0.8$ $[$
MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0\\ \mathbf{[64.3]}\\ 3.41\\ \mathbf{57.5]}\\ \mathbf{57.5]}\\ 0.4 & 0.6 & 0.8\\ \mathbf{7 \ Trackers}\\ \mathbf{7 \ Trackers}\\ \mathbf{(Ours)}\\ \mathbf{(Ours)}\\ \mathbf{(J. \ Choi \ et \ al}\\ \mathbf{(S. \ Yun \ et \ al}\\ \mathbf{(A. \ Lukežič \ et \ al}\\ \mathbf{(I. \ Valmadre)}\\ (I. \ Valma$
MDNet [68.5] MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [4 0 0 0 0 0 CVPR 201 ECO ECO-HC ACFN ADNet CSR-DCF CFNet LMCF	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers (Ours) (Ours) (J. Choi et a (S. Yun et al (A. Lukežič e (J. Valmadre (M. Wang et
MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [8 0 0 0 0 CVPR 201 ECO ECO-HC ACFN ADNet CSR-DCF CFNet LMCF MCPF	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers (Ours) (Ours) (J. Choi et a (S. Yun et al (A. Lukežič e (J. Valmadre (M. Wang et (T. Zhang et
MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 verlap threshold 7 Trackers (Ours) (Ours) (J. Choi et a (S. Yun et al (A. Lukežič e (J. Valmadre (M. Wang et (T. Zhang et (L. Zhang et
MDNet [68.5] TCNN [66.1] ECO-HC [65. DeepSRDCF SRDCFad [63 SRDCF [60.5] Staple [58.4] SiameseFC [5 0 0 0.2 0 CVPR 201 ECO ECO-HC ACFN ADNet CSR-DCF CFNet LMCF MCPF Obli-RaF SANet	o] [64.3] 3.4] 57.5] 0.4 0.6 0.8 Verlap threshold 7 Trackers (Ours) (Ours) (J. Choi et a (S. Yun et al (A. Lukežič e (J. Valmadre (M. Wang et (T. Zhang et (L. Zhang et (H. Fan, H. J

baz Khan, and M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In ECCV, 2016. [2] A. Declercq and J. H. Piater. Online learning of Gaussian mixture models - a two-level approach. In VISAPP, 2008.

Fahad Khan Michael Felsberg

References